

Robust classification: basic issues and challenges

Sébastien Destercke CNRS, Heudiasyc, Université de Technologie de Compiègne

Ales workshop

Robust classification: basic issues and challenges

The problem illustrated

Task: recognizing obstacles for autonomous, mobile robots

heudiasyc

Basic (supervised) learning setting

- Input features + observed output in $\mathcal{X} \times \mathcal{Y}$
- A number of observations $(x_i, y_i), i = 1, ..., n$
- From them, learn a model with parameters $\hat{\theta} \in \Theta$
- For new x, prediction $\hat{\theta}(x)$

Decision rule

Probabilistic case:

- A loss $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
- $\ell(\hat{y}, y)$ is the loss of predicting \hat{y} if y is the truth
- $y \ge y'$ if $E(\ell(y, \cdot)) \le E(\ell(y', \cdot))$ with

$$E(\ell(y,\cdot)) = \sum_{\omega \in \mathcal{Y}} p(\omega|x)\ell(y,\omega)$$

 $S \ge F \Leftrightarrow p(S) \ge p(F)$

 $S \ge F \Leftrightarrow \beta p(S) \ge \alpha p(F)$

Precise models and extended cost matrix

Predict whether there is a pedestrian, a bicycle or nothing

Often, different mistakes have different consequences

heudiasyc

Classical predictions

Assuming probability p(p) = 0.1, p(b) = 0.4, p(n) = 0.5, we would predict

$$p \quad b \quad n \\ p \begin{pmatrix} 0 & 1 & 2 \\ \mathbf{1} & \mathbf{0} & \mathbf{2} \\ 10 & 10 & 0 \end{pmatrix} \times (p(p), p(b), p(n))^{T} = \begin{pmatrix} 1.4 \\ \mathbf{1.1} \\ 5 \end{pmatrix}$$

Or, in terms of dominance $\mathbf{b} \succ \mathbf{p} \succ \mathbf{n}$

Talk topic

lssue

In usual setting, a **single** class/output of lowest expected cost is predicted:

- Reasonable when many decisions of small impact (e.g., Amazon recommendation, Google ranking) \rightarrow losing sometimes ok if winning in average
- Questionable when decisions are rare or mistakes of big consequences

Question(s)

- Which extensions to be informative but cautious in case of doubt?
- How to evaluate such extensions?

First solution: extend the cost matrix

Assuming probability p(p) = 0.1, p(b) = 0.4, p(n) = 0.5, we want the possibility to make indeterminate predictions

How should we complete the matrix? [3, 2, 5, 1]

A suitable matrix

Assuming probability p(p) = 0.1, p(b) = 0.4, p(n) = 0.5, and the following complete matrix

$$p \quad b \quad n$$

$$p \quad$$

Dominance relation $\{p, b\} \succ b \succ p \succ \{p, b, n\} \succ \{p, n\} \equiv \{b, n\} \succ n$

First solution: pros and cons

Imprecision is added in decision, uncertainty representation unmodified:

- +: usually rather efficient
- +: can be plugged to any existing probabilistic method
- -: gain in information=change of preferences
- -: uninformed situation not distinguished from ambiguous one

Two kinds of uncertainties

- Aleatory uncertainty: classes are really mixed → irreducible with more data (but possibly by adding features)
- Epistemic uncertainty: lack of information \rightarrow reducible

From imprecise models to imprecise decision [4]

General idea: proceed through skeptic inference

- given a set \mathcal{P} of possible models
- pairwise comparison: y > y' only if so for every model within \mathcal{P} . In the imprecise probabilistic case:

$$y > y' \Leftrightarrow \min_{p \in \mathcal{P}} E_p(\ell(y', \cdot) - (\ell(y, \cdot)) > 0)$$

• possible winners: *y* is a possibly optimal answer if there is a model for which it is optimal. In the imprecise probabilistic case:

$$\exists p \in \mathcal{P} \text{ with } y \in \arg\min_{\omega \in \mathcal{Y}} E_p(\ell(\omega, \cdot))$$

Quite different principle: we change the uncertainty representation.

Classical predictions

Assuming probability $p(p) \in [0, 0.2], p(b) \in [0.3, 0.5], p(n) \in [0.4, 0.6],$ we would predict

$$p \quad b \quad n \\ p \begin{pmatrix} 0 & 1 & 2 \\ \mathbf{1} & \mathbf{0} & \mathbf{2} \\ 10 & 10 & 0 \end{pmatrix} \times (p(p), p(b), p(n))^{T} = \begin{pmatrix} [1.2, 1.6] \\ [0.9, 1.3] \\ [4, 6] \end{pmatrix}$$

Or, in terms of dominance $\{\mathbf{b}, \mathbf{p}\} \succ n$

Second solution: pros and cons

Imprecision is added in uncertainty representation, decision unmodified:

- -: can be computationally heavy
- -: need to extend existing probabilistic method
- +: gain in information=refinement of preferences (what is said in the past remains true in the future)
- +: can distinguish lack of information from observed ambiguity

heudiasyc

The price of cautiousness

Before being cautious, need to answer questions:

- Why do I want to be cautious? What use for that?
- How much do I want to be cautious?
- If cautious, what means an optimal trade-off between:
 - o Being totally uninformative but right
 - Being fully precise but more often wrong

Again, this depends highly of the context, but how can we formalize it?

The two doctors story

In a hospital, doctors get 1\$ each time diagnostic is right.

2 Doctors pretty sure that patients have either Pneumonia (P) or Bronchitis (B)

Main solution so far for 0/1 loss

$$u(\hat{Y}, y) = \begin{cases} 0 & \text{if } y \notin \hat{Y} \\ \frac{\alpha}{|\hat{Y}|} + \frac{1 - \alpha}{|\hat{Y}|^2} & \text{otherwise} \end{cases}$$

with $u(\hat{Y}, y) = 1$ if $|\hat{Y}| = 1$ and $\hat{Y} = y$

• Discounted accuracy: $\alpha = 1$

$$u(\hat{Y}, y) = \frac{1}{|\hat{Y}|}$$

 \rightarrow no reward to cautiousness (cautiousness \equiv randomness)

- u_{65} : $\alpha = 1.6$, moderate reward to cautiousness
- u_{80} : $\alpha = 2.2$, big reward to cautiousness
- *u*_{'∞'}: → 1 if *y* ∈ Ŷ, no penalty for being cautious Solutions exists for generic losses too.

Boldness averseness illustrated

Data sets and results

#	a	b	С	d	е	f	g	h	i	j
Names	Breats	Iris	Wine	Auto	Seed	Glass	Forest	Derma	Diabete	Segment
Instances	106	150	178	205	210	214	325	366	769	2310
Features	10	4	13	26	7	9	27	34	8	19
Labels	6	3	3	7	3	7	4	6	2	7

		SR = 50%		$\epsilon = 20\%$		1	SR = 50%		$\epsilon = 20\%$	
#	stats	$\epsilon = 10\%$	$\epsilon = 40\%$	SR=30%	SR=75%	#	$\epsilon = 10\%$	$\epsilon = 40\%$	SR=30%	SR=75%
	precise	56.4	56.4	56.9	57.0		80.7	80.7	80.1	82.6
а	u ₆₅	61.4	49.0	55.2	55.9	f	52.7	39.6	45.9	46.3
	precise	97.1	97.1	96.3	95.8		87.4	87.4	87.2	87.3
b	u ₆₅	97.3	96.6	96.9	96.1	g	88.5	88.9	88.2	88.4
	precise	62.7	62.7	61.3	62.9		98.9	98.9	99.1	99.0
с	u ₆₅	86.2	82.0	84.9	85.9	h	96.9	78.3	92.2	92.8
	precise	80.0	80.0	79.6	79.8		79.2	79.2	79.7	79.7
d	u ₆₅	82.8	61.0	74.9	74.0	<i>i</i>	79.7	79.6	80.0	79.5
	precise	93.1	93.1	93.6	94.0		89.3	89.3	89.2	89.3
е	u ₆₅	92.4	91.6	92.2	92.2	j	61.7	50.1	56.7	56.3

• Adding even little imprecision harmful

- Adding little imprecision good, a lot bad
- Adding imprecision, even quite a lot, actually pays off

Conclusions

- · Many ways to add cautiousness in learning problems
- Not all of them equivalent, at least from a principled standpoint (but also from a practical one)
- Important to answer the questions: why and how much do we want to be cautious?

References I

 Juan José del Coz, Jorge Díez, and Antonio Bahamonde. Learning nondeterministic classifiers. Journal of Machine Learning Research, 10(Oct):2273–2293, 2009.

- [2] Thien M Ha. The optimum class-selective rejection rule. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(6):608–615, 1997.
- [3] Gen Yang, Sébastien Destercke, and Marie-Hélène Masson. The costs of indeterminacy: How to determine them? IEEE transactions on cybernetics, 47(12):4316–4327, 2017.
- M. Zaffalon. The naive credal classifier. J. Probabilistic Planning and Inference, 105:105–122, 2002.
- [5] Marco Zaffalon, Giorgio Corani, and Denis Mauá. Evaluating credal classifiers by utility-discounted predictive accuracy. International Journal of Approximate Reasoning, 53(8):1282–1301, 2012.

