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Imprecise probabilities

=

broaden probability theory in order to deal with imprecision and
indecision.

Basic idea of imprecise probabilities: decisions and choice.
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(Precise) choice functions

A preference relation is ≺ is a strict weak order (irreflexive and transitive,
with transitive absence of preference binary relation) on a set of options.

The goal is to observe a subject’s choices to learn about her preferences.

A: set of option (non-empty but finite)

C(A): chosen or admissible or non-rejected options

R(A): rejected options (R(A) = A \C(A))

A choice function C is a map

C : Q→Q∪{ /0} : A 7→ C(A) such that C(A)⊆ A.
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Induced choice functions

Given a preference relation ≺, the induced choice function C≺ is defined
by

C≺(A) := {f ∈ A : (∀g ∈ A)f 6≺ g}.

A choice function C is rationalisable if there is a preference relation ≺
such that C = C≺; if this is the case, then C is rationalised by ≺.

Proposition: if C is rationalised by ≺, then ≺ can be retrieved by

f ≺ g⇔ (∃A ∈Q)f ∈ C(A) and g ∈ R(A).
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Induced choice functions

Given a preference relation ≺, the induced choice function C≺ is defined
by

C≺(A) := {f ∈ A : (∀g ∈ A)f 6≺ g}.

When is C rationalisable?

Non-emptiness

C(A) 6= /0.

Houthakker’s axiom

If f ,g ∈ A1∩A2, f ∈ C(A1) and g ∈ C(A2), then f ∈ C(A2).

Proposition: C is non-empty and satisfies Houthakker’s Axiom if and only
if C is rationalisable.
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Example: probabilities

A random variable X takes values in the finite possibility space X .

We have a probability mass function p on X .

What choice function describes my beliefs?



What we choose between: gambles

A gamble f : X → R is an uncertain reward whose value is f (X ), and we
collect all gambles in L = RX .

X = {H,T}

H

T

1

1

f

= (f (H), f (T))

f (H)

f (T)
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Fair coin

p(T) p(H)

H

T

Assessment: “The coin is fair.”

f <p g⇔ Ep(f )< Ep(g)

Cp(A) = {f ∈ A : (∀g ∈ A)Ep(g)≤ Ep(f )}= argmax{f ∈ A : Ep(f )}

Cp is non-empty and satisfies Houthakker’s Axiom, and is therefore
rationalisable, with ≺=<p.
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“Non-Archimedean” beliefs

Assessment: “The coin is infinitesimally biased towards H,
but not by any definite amount.”

p(T) p(H)
“H is more likely than T.”

p(T) p(H)
still biased by some amount

p(T) p(H)
“H is equally likely as T.”

(Sets of) probabilities cannot capture this belief.
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Binary choice: Sets of desirable gambles

Preference relation � on L . For all f ,g,h in L and real λ > 0:

f � g⇔ λ f +h � λg+h.

The subject’s set of desirable gambles: which gambles does she strictly
prefer to 0?

How does that work?

f � g⇔ f −g � 0⇔ f −g ∈ D

for all f and g in L .

To summarise:
D = {f ∈L : f � 0}.
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Binary choice: Sets of desirable gambles

Set of desirable gambles D = {f ∈L : f � 0} ⊆L

Working with sets of desirable gambles is simple and elegant.

They include lower previsions and sets of probabilities as a special case.

They generalise conservative logical inference (natural extension).



Coherent sets of desirable gambles
A set of desirable gambles D is called coherent if for all f ,g in L :
D1. if f ≤ 0 then f /∈ D [not desiring non-positivity]
D2. if f > 0 then f ∈ D [accepting partial gains]
D3. if f ∈ D then λ f ∈ D for all real λ > 0 [scaling]
D4. if f ,g ∈ D then f +g ∈ D [addition]

halfspace: precise probability modelhalfspace: precise probability modelsmallest coherent Dv: the vacuous model
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Example: Choice based on desirability

Assessment: “The coin is infinitesimally biased towards H,
but not by any definite amount.”

H

T

CD(A) = {f ∈ A : (∀g ∈ A)g− f /∈ D}, so f ∈ CD(A)⇔ A−{f}∩D = /0.
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Disjunctive statements

Assessment: “The coin has two identical sides of unknown type.”

Consider the coherent sets of desirable gambles

DH = {f ∈L : f (H)> 0}∪L>0 and DT = {f ∈L : f (T)> 0}∪L>0.
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Then D = DH∩DT = L>0 is the vacuous set of desirable gambles.
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Coherent choice functions

We call a choice function C on L coherent if for all A,A1,A2 in Q, f ,g in
L and λ in R>0:

C1. C(A) 6= /0; [non-emptiness]

C2. if f < g then f ∈ R({f ,g}); [non-triviality]

C3a. if A ⊆ R(A1) and A1 ⊆ A2 then A ⊆ R(A2); [Sen’s condition α]

C3b. if A1 ⊆ R(A2) and A ⊆ A1
then A1 \A ⊆ R(A2 \A); [Aizerman’s condition]

C4a. if A1 ⊆ C(A2) then λA1 ⊆ C(λA2); [scaling]

C4b. if A1 ⊆ C(A2) then A1 +{f} ⊆ C(A2 +{f}). [addition]

First axiomatisation: Seidenfeld, Schervish and Kadane, 2010.



Reasoning with choice functions

C1 is not more informative than C2 if C1(A)⊇ C2(A) for all A.

The smallest coherent choice function is

Cv(A) = max(A) = {f ∈ A : (∀g ∈ A)f 6< g}= CDv(A).
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Coin with identical sides

Assessment: “The coin has two identical sides of unknown type.”

DH = {f ∈L : f (H)> 0}∪L>0 and DT = {f ∈L : f (T)> 0}∪L>0.

H

T

H

T

CH(A) = {f ∈ A : (∀g ∈ A)g− f /∈ DH}= argmax{f ∈max(A) : f (H)}
CT(A) = argmax{f ∈max(A) : f (T)}

But

C(A) = argmax{f ∈max(A) : f (H)}∪argmax{f ∈max(A) : f (T)}.



Overview

Fair coin
Probability

H at least as likely as T
(Convex and closed) sets of

probabilities

infinitesimally biased
Sets of desirable gambles

disjunctive statements
(Arbitrary) sets of probabilities

unification
Choice functions




