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Randomized Fair Multi-Agent Optimization

Multi-Agent Optimization

— P is a multiagent optimization problem involving n agents.
- X C{0,1}? = {x € {0,1}? : Ax = b} is the set of feasible solutions.

— Each agent has a (dis)utility function u; : X — R™ to optimize where
ui(x) = 327 ujx;.

Every solution x thus induces a (dis)utility vector u(x)=(u1(x) - - - un(x)).
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Randomized Fair Multi-Agent Optimization

The OWA Operator

A well known criterion to identify fair solutions is the Ordered Weighted Average
(OWA) operator with decreasing weights [Yager, 1988].

The OWA operator

Let w = (w1, ..., w,) be a vector of weights. The OWAy(-) operator induced by w is
defined by:

V utility vector u, OWAw(u) = >-7 | wili;

where U is vector u sorted in nondecreasing order: u; < ... < U,

| A\

Example

w = (0.4,0.3,0.2)
@ 0OWAw(8,11,7) =7%04+8%0.3+11%x0.2=285
@ 0WAw(5,15,5) =5%04+5%0.3+15%x0.2=38
@ OWAw(4,9,7)=4%04+4+7%x03+9x02=64
@ 0OWAW(7,14,6) =6%0.4+7%0.3+14%0.2=28.7

v

H. Gilbert and O. Spanjaard 2018/04/12 3 /20



Randomized Fair Multi-Agent Optimization

Why Randomization?

Machina's Mom

A mother with two children has one indivisible treat.

She can give it to either one of her children but not both.
Neither x! = (1,0) nor x2 = (0, 1) seem satisfying.
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Randomized Fair Multi-Agent Optimization

Why Randomization?

Machina's Mom

A mother with two children has one indivisible treat.

She can give it to either one of her children but not both.
Neither x! = (1,0) nor x2 = (0, 1) seem satisfying.

tossing a coin 77 choosing herself

— Both children have equal chances of having the treat.

@
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Randomized Fair Multi-Agent Optimization

Randomized Setting

A mixed solution is a lottery over solutions and is denoted by Py.
The set of all possible mixed solutions is denoted by A y.

The definition of a utility vector is extended by linearity to mixed
solutions. More formally, u;j(Px) = Y v Px(x)ui(x).
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Randomized Fair Multi-Agent Optimization

Machina's Mom Continued

Machina’'s Mom Continued

Consider pure solutions x!,x% and the mixed solution Py defined by
Px(x) = 0.5 for i € {1,2} such that:

u(Py) = 0.5u(x!) + 0.5u(x?) = (0.5, 0.5)
If wi =3/4 and wo = 1/4, we have:

0WAw (u(x!)) = OWAw((1,0)) = 0.75-0+0.25-1 = 0.25
OWAw (u(x?)) = 0WAw((0,1)) = 0.75- 04 0.25 -1 = 0.25
OWAy (u(Px)) = OWA((0.5,0.5)) = 0.75-0.5+0.25-0.5 = 0.5

The mixed solution Py is therefore preferred to both pure solutions.
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Randomized Fair Multi-Agent Optimization

Randomized Fair Multi-Agent Assignment Problem

Data:
w = (0.6,0.3,0.1) 03 S & B
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Randomized Fair Multi-Agent Optimization

Important Remark

Note that:
@ Determining a solution x maximizing OWA,(u(x)) is NP-hard
[Lesca, Minoux & Perny, Algorithmica 2018]
@ Ja compact MIP formulation for determining such a solution

@ The relaxation of this MIP yields a solution X maximizing OWA,, (u(x))

Why not solving this relaxation and computing Py from X, all this in
polynomial time ?

Actually we could! But we provide:

@ A general polynomial complexity result that holds for many fair
randomized optimization problems (in particular, no need for a
compact MIP formulation)

@ A procedure that runs faster in practice
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Randomized Fair Multi-Agent Optimization

Our contribution relies on a game theoretic view of randomized
multi-agent optimization problems which enables to entail theoretical
results and computational methods.
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Game-Theoretic View of the Problem

Game-Theoretic View of the Problem

Game Theoretic View

If weights are decreasing, OWA,, is concave piecewise-linear and therefore:

VPx € Ay, O0OWAy(u(Py))= mi)rgWAwU(u(PX))
(S

where ¥ is the set of permutations of {1,..., n} and W, =(Wy(1),- .., Wo(n))-
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Game-Theoretic View of the Problem

Game-Theoretic View of the Problem

Game Theoretic View

If weights are decreasing, OWA,, is concave piecewise-linear and therefore:

VPx € Ay, O0OWAy(u(Py))= migWAWU(u(PX))
(S
where ¥ is the set of permutations of {1, ..., n} and W, =(Wy(1),- .., Wo(n))-

i OWAw(u(Py)) = OB (ro]elg WAy, (u(Px))

Two-player zero-sum game:

— the set of pure strategies for player 1 is the set of feasible solutions X’;
— the set of pure strategies for player 2 is the set of permutations X;

— the payoffs are given by values WA,,_ (u(x)) for x € X and 0 € ¥.
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Game-Theoretic View of the Problem

lllustration On The Fair Assignment Problem

Strategies of the x-player: Strategies of the o-player:

S B o w, =(0.3,0.6,0.1)
2

-
o @ 6 10 03 e w, =(0.3,0.1,0.6)

) 6 4 8 06 .

@ 8 3 9 01

j @ 6/ % The solution Py played by the
™ ; ) x-player in an NE is an optimal mixed

o - 6 0 03 solution for OWA.

@ 6 4 8 0.1

@ 8 3 9 06 (Payoff: WAwg(u(x)))
° ..

A mixed Nash Equilibrium (NE) is a couple (Py, Ps) s.t.:

rr;ix moin WAw, (u(Px)) = rr;i:n mfoAWPz(u(x))

where WAwp_ (u(Px)) =2, >« Px(0) Px(x)WAw, (x)
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Game-Theoretic View of the Problem

Finding the Nash Equilibrium Pro

Naive solution: let's try to find a Nash Equilibrium by linear programming:

( max Vv
V,px:XEX

v < won(O_pxi(x)) Voex
i=1

xeX

.

xeX
L vER py>0 Vxe X

Pro

Unfortunately the number of variables is |X| 4+ 1 and the number of
constraints is |X| + 1. The game is too large to be solved directly!
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Game-Theoretic View of the Problem

Finding the Nash Equilibrium Pro

Naive solution: let's try to find a Nash Equilibrium by linear programming:

( max Vv
V,px:XEX

v < won(O_pxi(x)) Voex
i=1

xeX

.

xeX
L vER py>0 Vxe X

Pro

Unfortunately the number of variables is |X| 4+ 1 and the number of
constraints is |X| + 1. The game is too large to be solved directly!

We explored two solution procedures to alleviate this difficulty.
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Oracle Methods and Results

Cutting Planes After Reformulation of Prp

Two phases: 1) looking for a solution X, then 2) computing Py from X

max_ v
V,px:iXxeX
max_ v
v < ZWG pru, x)) Voex Ve
xex V<ng,u,)? Vo e X
Sp
x€X X e Conv(X)
\ve]R px >0 VxeX J . )
|X'| + 1 variables |p +1 variables|

We use a cutting planes method to handle the exponential number of
constraints in ¥ and/or Conv(X).
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Oracle Methods and Results

A General Polynomial Complexity Result

If you can optimize over X" in polynomial time:

1) solving ﬁ,:o is of polynomial complexity.
(by polynomial time equivalence between optimization and separation
[Grotschel et al., 1981])

2) computing Py from X is of polynomial complexity.
(by solving an LP [Mastin et al., 2015])

Any randomized fair optimization problem such that optimizing over X is
polynomial in p is polynomially solvable in p and n.
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Oracle Methods and Results

Double oracle [McMahan et al., 2003]

Dynamically builds a sub-game in which a mixed NE is also a NE of the
whole game, by using two oracle procedures (one for each player).

Oracle procedure
Given a mixed strategy of the opponent, an oracle procedure efficiently
computes the best pure strategy (in the whole game) to play against
this mixed strategy.
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Oracle Methods and Results

Double oracle [McMahan et al., 2003]

Description of the algorithm

1. Initialize with a small subset of strategies for each player.
2. Compute a mixed NE of this sub-game.

3. Using the oracles, for each player, compute a best response to the
current optimal mixed strategy of the opponent.

4. If at least a new strategy has been generated, go to 2, otherwise exit.

v

o Convergence is achieved when the best-response oracles generate pure
strategies that are already in the sub-game.

@ At convergence the NE of the sub-game is an NE of the entire game.
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Oracle Methods and Results

Best response procedures

Best response oracle for the x-player

Amounts to solving problem P according to a WA criterion with weights & defined by
i =2 oes Pr(o)wo(.

S & B s os S & B

@ 6 2 10 03 01 02 _y = 12 04 2
@ 4 8 01 03 02 @ 12 08 16
@ 3 9 06 06 06 © 48 18 45

Amounts to sorting vector u(Px) (independent of P).

&R

@ 6 2 10 03
() 4 8 01
@ 3 9 06
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Oracle Methods and Results

Experiments

Assignment problem with an increasing number of agents.
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Figure: Costs are generated in [1,20].

There is a phase transition phenomenon.
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Oracle Methods and Results

Summary

o Randomized fair multi-agent optimization is easy if the standard
variant of the problem is easy

@ To solve a randomized fair multi-agent optimization problem, a
double oracle procedure (which is not polynomial time) performs
better in practice than a cutting-plane method.

@ This result has been successfully applied to the stable marriage
problem.
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Oracle Methods and Results

THANK YOU!
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Oracle Methods and Results
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