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Randomized Fair Multi-Agent Optimization

Multi-Agent Optimization

– P is a multiagent optimization problem involving n agents.

– X ⊆ {0, 1}p = {x ∈ {0, 1}p : Ax = b} is the set of feasible solutions.

– Each agent has a (dis)utility function ui : X → R+ to optimize where
ui (x) =

∑p
j=1 uijxj .

Every solution x thus induces a (dis)utility vector u(x)=(u1(x) · · · un(x)).
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Randomized Fair Multi-Agent Optimization

The OWA Operator

A well known criterion to identify fair solutions is the Ordered Weighted Average

(OWA) operator with decreasing weights [Yager, 1988].

The OWA operator

Let w = (w1, . . . ,wn) be a vector of weights. The OWAw(·) operator induced by w is
defined by:

∀ utility vector u, OWAw(u) =
∑n

i=1 wi~ui

where ~u is vector u sorted in nondecreasing order: ~u1 ≤ . . . ≤ ~un

Example

w = (0.4, 0.3, 0.2)

OWAw(8, 11, 7) = 7 ∗ 0.4 + 8 ∗ 0.3 + 11 ∗ 0.2 = 8.5

OWAw(5, 15, 5) = 5 ∗ 0.4 + 5 ∗ 0.3 + 15 ∗ 0.2 = 8

OWAw(4, 9, 7) = 4 ∗ 0.4 + 7 ∗ 0.3 + 9 ∗ 0.2 = 6.4

OWAw(7, 14, 6) = 6 ∗ 0.4 + 7 ∗ 0.3 + 14 ∗ 0.2 = 8.7
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Randomized Fair Multi-Agent Optimization

Why Randomization?

Machina’s Mom

A mother with two children has one indivisible treat.
She can give it to either one of her children but not both.
Neither x1 = (1, 0) nor x2 = (0, 1) seem satisfying.

tossing a coin % choosing herself

– Both children have equal chances of having the treat.
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Randomized Fair Multi-Agent Optimization

Randomized Setting

A mixed solution is a lottery over solutions and is denoted by PX .

The set of all possible mixed solutions is denoted by ∆X .

The definition of a utility vector is extended by linearity to mixed
solutions. More formally, ui (PX ) =

∑
x∈X PX (x)ui (x).
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Randomized Fair Multi-Agent Optimization

Machina’s Mom Continued

Machina’s Mom Continued

Consider pure solutions x1, x2 and the mixed solution PX defined by
PX (xi) = 0.5 for i ∈ {1, 2} such that:

u(PX ) = 0.5u(x1) + 0.5u(x2) = (0.5, 0.5)

If w1 = 3/4 and w2 = 1/4, we have:

OWAw(u(x1)) = OWAw((1, 0)) = 0.75 · 0 + 0.25 · 1 = 0.25

OWAw(u(x2)) = OWAw((0, 1)) = 0.75 · 0 + 0.25 · 1 = 0.25

OWAw(u(PX )) = OWAw((0.5, 0.5)) = 0.75 · 0.5 + 0.25 · 0.5 = 0.5

The mixed solution PX is therefore preferred to both pure solutions.
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Randomized Fair Multi-Agent Optimization

Randomized Fair Multi-Agent Assignment Problem

Data:
w = (0.6, 0.3, 0.1)

6 2 10

6 4 8

8 3 9

Sol. x ∈ X :

0 1 0

0 0 1

1 0 0

Value: OWAw(u(x))
2 ∗ 0.6 + 8 ∗ 0.3 + 10 ∗ 0.1

= 4.6

Sol. x̃ ∈ Conv(X ):

0.8 0 0.2

0.2 0.3 0.5

0 0.7 0.3

Value: OWAw(u(x̃))
4.8∗0.6+5.2∗0.3+6.4∗0.1
= 5.08

0.3

1 0 0

0 1 0

0 0 1

0.5

1 0 0

0 0 1

0 1 0

0.2

0 0 1

1 0 0

0 1 0
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Randomized Fair Multi-Agent Optimization

Important Remark

Note that:

Determining a solution x maximizing OWAw(u(x)) is NP-hard

[Lesca, Minoux & Perny, Algorithmica 2018 ]

∃ a compact MIP formulation for determining such a solution

The relaxation of this MIP yields a solution x̃ maximizing OWAw(u(x))

Why not solving this relaxation and computing PX from x̃, all this in
polynomial time ?

Actually we could! But we provide:

A general polynomial complexity result that holds for many fair
randomized optimization problems (in particular, no need for a
compact MIP formulation)

A procedure that runs faster in practice
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Randomized Fair Multi-Agent Optimization

Our contribution relies on a game theoretic view of randomized
multi-agent optimization problems which enables to entail theoretical
results and computational methods.
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Game-Theoretic View of the Problem

Game-Theoretic View of the Problem

Game Theoretic View

If weights are decreasing, OWAw is concave piecewise-linear and therefore:

∀PX ∈ ∆X , OWAw(u(PX )) = min
σ∈Σ

WAwσ(u(PX ))

where Σ is the set of permutations of {1, . . . , n} and wσ=(wσ(1),...,wσ(n)).

max
PX

OWAw(u(PX ))⇒ max
PX∈∆X

min
σ∈Σ

WAwσ(u(PX ))

Two-player zero-sum game:
– the set of pure strategies for player 1 is the set of feasible solutions X ;
– the set of pure strategies for player 2 is the set of permutations Σ;
– the payoffs are given by values WAwσ(u(x)) for x ∈ X and σ ∈ Σ.

H. Gilbert and O. Spanjaard 2018/04/12 10 / 20



Game-Theoretic View of the Problem

Game-Theoretic View of the Problem

Game Theoretic View

If weights are decreasing, OWAw is concave piecewise-linear and therefore:

∀PX ∈ ∆X , OWAw(u(PX )) = min
σ∈Σ

WAwσ(u(PX ))

where Σ is the set of permutations of {1, . . . , n} and wσ=(wσ(1),...,wσ(n)).

max
PX

OWAw(u(PX ))⇒ max
PX∈∆X

min
σ∈Σ

WAwσ(u(PX ))

Two-player zero-sum game:
– the set of pure strategies for player 1 is the set of feasible solutions X ;
– the set of pure strategies for player 2 is the set of permutations Σ;
– the payoffs are given by values WAwσ(u(x)) for x ∈ X and σ ∈ Σ.

H. Gilbert and O. Spanjaard 2018/04/12 10 / 20



Game-Theoretic View of the Problem

Game-Theoretic View of the Problem

Game Theoretic View

If weights are decreasing, OWAw is concave piecewise-linear and therefore:

∀PX ∈ ∆X , OWAw(u(PX )) = min
σ∈Σ

WAwσ(u(PX ))

where Σ is the set of permutations of {1, . . . , n} and wσ=(wσ(1),...,wσ(n)).

max
PX

OWAw(u(PX ))⇒ max
PX∈∆X

min
σ∈Σ

WAwσ(u(PX ))

Two-player zero-sum game:
– the set of pure strategies for player 1 is the set of feasible solutions X ;
– the set of pure strategies for player 2 is the set of permutations Σ;
– the payoffs are given by values WAwσ(u(x)) for x ∈ X and σ ∈ Σ.

H. Gilbert and O. Spanjaard 2018/04/12 10 / 20



Game-Theoretic View of the Problem

Illustration On The Fair Assignment Problem

Strategies of the x-player:

6 2 10 0.3

6 4 8 0.6

8 3 9 0.1

6 2 10 0.3

6 4 8 0.1

8 3 9 0.6

. . .

Strategies of the σ-player:

wσ = (0.3, 0.6, 0.1)

wσ = (0.3, 0.1, 0.6)

. . .

The solution PX played by the
x-player in an NE is an optimal mixed
solution for OWA.

Payoff: WAwσ
(u(x))

A mixed Nash Equilibrium (NE) is a couple (PX ,PΣ) s.t.:

max
PX

min
σ

WAwσ(u(PX )) = min
PΣ

max
x

WAwPΣ
(u(x))

where WAwPΣ
(u(PX )) =

∑
σ

∑
x PΣ(σ)PX (x)WAwσ(x)
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Game-Theoretic View of the Problem

Finding the Nash Equilibrium PFO

Naive solution: let’s try to find a Nash Equilibrium by linear programming:

PFO



max
v ,px:x∈X

v

v ≤
n∑

i=1

wσ(i)(
∑
x∈X

pxui (x)) ∀σ∈Σ∑
x∈X

px = 1

v ∈ R px ≥ 0 ∀x ∈ X

Unfortunately the number of variables is |X |+ 1 and the number of
constraints is |Σ|+ 1. The game is too large to be solved directly!

We explored two solution procedures to alleviate this difficulty.
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Oracle Methods and Results

Cutting Planes After Reformulation of PFO

Two phases: 1) looking for a solution x̃, then 2) computing PX from x̃

max
v ,px:x∈X

v

v ≤
n∑

i=1

wσ(i)(
∑
x∈X

pxui (x)) ∀σ∈Σ∑
x∈X

px = 1

v ∈ R px ≥ 0 ∀x ∈ X

max
v ,x̃1,...,x̃p

v

v ≤
n∑

i=1

wσ(i)ui (x̃) ∀σ ∈ Σ

x̃ ∈ Conv(X )︸ ︷︷ ︸
PFO

︸ ︷︷ ︸
P̃FO

|X |+ 1 variables p + 1 variables

We use a cutting planes method to handle the exponential number of
constraints in Σ and/or Conv(X ).
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Oracle Methods and Results

A General Polynomial Complexity Result

If you can optimize over X in polynomial time:

1) solving P̃FO is of polynomial complexity.
(by polynomial time equivalence between optimization and separation
[Grotschel et al., 1981])

2) computing PX from x̃ is of polynomial complexity.
(by solving an LP [Mastin et al., 2015])

Theorem

Any randomized fair optimization problem such that optimizing over X is
polynomial in p is polynomially solvable in p and n.
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Oracle Methods and Results

Double oracle [McMahan et al., 2003]

Main idea

Dynamically builds a sub-game in which a mixed NE is also a NE of the
whole game, by using two oracle procedures (one for each player).

Oracle procedure

Given a mixed strategy of the opponent, an oracle procedure efficiently
computes the best pure strategy (in the whole game) to play against
this mixed strategy.
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Oracle Methods and Results

Double oracle [McMahan et al., 2003]

Description of the algorithm

1. Initialize with a small subset of strategies for each player.

2. Compute a mixed NE of this sub-game.

3. Using the oracles, for each player, compute a best response to the
current optimal mixed strategy of the opponent.

4. If at least a new strategy has been generated, go to 2, otherwise exit.

Convergence is achieved when the best-response oracles generate pure
strategies that are already in the sub-game.

At convergence the NE of the sub-game is an NE of the entire game.
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Oracle Methods and Results

Best response procedures

Best response oracle for the x-player

Amounts to solving problem P according to a WA criterion with weights σ̃ defined by

σ̃i =
∑

σ∈Σ PΣ(σ)wσ(i).

0.5 0.5

6 2 10 0.3 0.1 0.2

6 4 8 0.1 0.3 0.2

8 3 9 0.6 0.6 0.6

→ 1.2 0.4 2

1.2 0.8 1.6

4.8 1.8 4.5

Best response oracle for the σ-player

Amounts to sorting vector u(PX ) (independent of P).

6 2 10 0.3

6 4 8 0.1

8 3 9 0.6
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Oracle Methods and Results

Experiments

Assignment problem with an increasing number of agents.

ti
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e
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.)

number of agents

0

0.2

0.4
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1.2

1.4

1.6

1.8

50 100 150 200 250 300

DO
Comp. x̃

Comp. PX
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Figure: Costs are generated in [1, 20].

There is a phase transition phenomenon.
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Oracle Methods and Results

Summary

Randomized fair multi-agent optimization is easy if the standard
variant of the problem is easy

To solve a randomized fair multi-agent optimization problem, a
double oracle procedure (which is not polynomial time) performs
better in practice than a cutting-plane method.

This result has been successfully applied to the stable marriage
problem.
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Oracle Methods and Results

THANK YOU!
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Oracle Methods and Results
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