

Spatio-temporal data fusion for autonomous vehicle localization

Anthony WELTE

Supervized by Philippe Xu, Philippe Bonnifait Clément Zinoune (Renault)

This work is carried out within SIVALab, a shared laboratory between Heudiasyc and Renault.

Plan

- Problem Statement
- Localization System
- Matching Problem
- Map Reliability

Problem Statement

$$\boldsymbol{x}_{k} = \begin{vmatrix} \boldsymbol{x}_{k} \\ \boldsymbol{y}_{k} \\ \boldsymbol{\theta}_{k} \\ \boldsymbol{v}_{k} \\ \boldsymbol{\omega}_{k} \end{vmatrix}$$

r

Localization needs to be **accurate** and **reliable**.

Sensor overview Perception Sensors

Mobileye

Velodyne

State -

Sensor overview HD Maps

Streetview

Sensor overview Observation Model

Mobileye

Velodyne

Sensor overview Observation Model

Mobileye

Velodyne

$$C_{i} = h^{m}(\mathbf{x}_{k})$$

=
$$\frac{(I_{x}\sin\theta_{k} + y_{k} - y^{A})x^{AB} - (I\cos\theta_{k} + x_{k} - x^{A})y^{AB}}{x^{AB}\cos\theta_{k} + y^{AB}\sin\theta_{k}}$$

$$\begin{bmatrix} M_{X_i} \\ M_{Y_i} \end{bmatrix} = h_i^{S}(\mathbf{x}_k) = \begin{bmatrix} \cos\theta_k & \sin\theta_k \\ -\sin\theta_k & \cos\theta_k \end{bmatrix} \begin{bmatrix} x_i^{S} - x_k \\ y_i^{S} - y_k \end{bmatrix}$$

Filtering Scheme

Prediction $\hat{x}_{k|k-1} = f_k \left(\hat{x}_{k-1|k-1} \right),$ $\boldsymbol{P}_{k|k-1} = \boldsymbol{F}_k \boldsymbol{P}_{k-1|k-1} \boldsymbol{F}_k^T + \boldsymbol{Q}_k,$ Update $ilde{oldsymbol{y}}_{ au} = oldsymbol{z}_k - oldsymbol{h}_k \left(\hat{oldsymbol{x}}_{k|k-1} ight),$ $\boldsymbol{S}_k = \boldsymbol{H}_k \boldsymbol{P}_{k|k-1} \boldsymbol{H}_k^T + \boldsymbol{R}_k,$ $\boldsymbol{K}_{k} = \boldsymbol{P}_{k|k-1} \boldsymbol{H}_{k}^{T} \boldsymbol{S}_{k}^{-1},$ $\hat{\boldsymbol{x}}_{k|k} = \hat{\boldsymbol{x}}_{k|k-1} + \boldsymbol{K}_k \tilde{\boldsymbol{y}}_k,$ $\boldsymbol{P}_{k|k} = \left(\boldsymbol{I} - \boldsymbol{K}_k \boldsymbol{H}_k\right) \boldsymbol{P}_{k|k-1},$ Smoothing $\mathbf{p} = \mathbf{p}^T = \mathbf{p}^{-1}$ τ

$$\begin{aligned} \boldsymbol{J}_{k} &= \boldsymbol{P}_{k|k} \boldsymbol{F}_{k+1} \boldsymbol{F}_{k+1|k} \\ \hat{\boldsymbol{x}}_{k|N} &= \hat{\boldsymbol{x}}_{k|k} + \boldsymbol{J}_{k} \left(\hat{\boldsymbol{x}}_{k+1|N} - \hat{\boldsymbol{x}}_{k+1|k} \right), \\ \boldsymbol{P}_{k|N} &= \boldsymbol{P}_{k|k} + \boldsymbol{J}_{k} \left(\boldsymbol{P}_{k+1|N} - \boldsymbol{P}_{k+1|k} \right) \boldsymbol{J}_{k}^{T}. \end{aligned}$$

Filtering Scheme

Prediction

$$\begin{split} \hat{\boldsymbol{x}}_{k|k-1} &= \boldsymbol{f}_{k} \left(\hat{\boldsymbol{x}}_{k-1|k-1} \right), \\ \boldsymbol{P}_{k|k-1} &= \boldsymbol{F}_{k} \boldsymbol{P}_{k-1|k-1} \boldsymbol{F}_{k}^{T} + \boldsymbol{Q}_{k}, \\ \text{Update} \\ & \tilde{\boldsymbol{y}}_{k} &= \boldsymbol{z}_{k} - \boldsymbol{h}_{k} \left(\hat{\boldsymbol{x}}_{k|k-1} \right), \\ \boldsymbol{S}_{k} &= \boldsymbol{H}_{k} \boldsymbol{P}_{k|k-1} \boldsymbol{H}_{k}^{T} + \boldsymbol{R}_{k}, \\ \boldsymbol{K}_{k} &= \boldsymbol{P}_{k|k-1} \boldsymbol{H}_{k}^{T} \boldsymbol{S}_{k}^{-1}, \\ \hat{\boldsymbol{x}}_{k|k} &= \hat{\boldsymbol{x}}_{k|k-1} + \boldsymbol{K}_{k} \tilde{\boldsymbol{y}}_{k}, \\ \boldsymbol{P}_{k|k} &= \left(\boldsymbol{I} - \boldsymbol{K}_{k} \boldsymbol{H}_{k} \right) \boldsymbol{P}_{k|k-1}, \end{split}$$

Smoothing

$$\begin{split} \boldsymbol{J}_{k} &= \boldsymbol{P}_{k|k} \boldsymbol{F}_{k+1}^{T} \boldsymbol{P}_{k+1|k}^{-1} \\ \hat{\boldsymbol{x}}_{k|N} &= \hat{\boldsymbol{x}}_{k|k} + \boldsymbol{J}_{k} \left(\hat{\boldsymbol{x}}_{k+1|N} - \hat{\boldsymbol{x}}_{k+1|k} \right), \\ \boldsymbol{P}_{k|N} &= \boldsymbol{P}_{k|k} + \boldsymbol{J}_{k} \left(\boldsymbol{P}_{k+1|N} - \boldsymbol{P}_{k+1|k} \right) \boldsymbol{J}_{k}^{T}. \end{split}$$

P.S.C.

Filtering Scheme

Prediction

$$\begin{split} \hat{x}_{k|k-1} &= \boldsymbol{f}_{k} \left(\hat{x}_{k-1|k-1} \right), \\ \boldsymbol{P}_{k|k-1} &= \boldsymbol{F}_{k} \boldsymbol{P}_{k-1|k-1} \boldsymbol{F}_{k}^{T} + \boldsymbol{Q}_{k}, \\ \text{Update} \\ & \tilde{\boldsymbol{y}}_{k} &= \boldsymbol{z}_{k} - \boldsymbol{h}_{k} \left(\hat{x}_{k|k-1} \right), \\ & \boldsymbol{S}_{k} &= \boldsymbol{H}_{k} \boldsymbol{P}_{k|k-1} \boldsymbol{H}_{k}^{T} + \boldsymbol{R}_{k}, \\ & \boldsymbol{K}_{k} &= \boldsymbol{P}_{k|k-1} \boldsymbol{H}_{k}^{T} \boldsymbol{S}_{k}^{-1}, \\ & \hat{\boldsymbol{x}}_{k|k} &= \hat{\boldsymbol{x}}_{k|k-1} + \boldsymbol{K}_{k} \tilde{\boldsymbol{y}}_{k}, \\ & \boldsymbol{P}_{k|k} &= (\boldsymbol{I} - \boldsymbol{K}_{k} \boldsymbol{H}_{k}) \boldsymbol{P}_{k|k-1}, \end{split}$$
Smoothing

$$\begin{split} \boldsymbol{J}_{k} &= \boldsymbol{P}_{k|k} \boldsymbol{F}_{k+1}^{T} \boldsymbol{P}_{k+1|k}^{-1} \\ \hat{\boldsymbol{x}}_{k|N} &= \hat{\boldsymbol{x}}_{k|k} + \boldsymbol{J}_{k} \left(\hat{\boldsymbol{x}}_{k+1|N} - \hat{\boldsymbol{x}}_{k+1|k} \right), \\ \boldsymbol{P}_{k|N} &= \boldsymbol{P}_{k|k} + \boldsymbol{J}_{k} \left(\boldsymbol{P}_{k+1|N} - \boldsymbol{P}_{k+1|k} \right) \boldsymbol{J}_{k}^{T}. \end{split}$$

Matching Problem Problem Statement

The observations need to be matched to map features to be used for localization. Matching is hard because:

- The state estimate has uncertainty
- There are few measurements leading to ambiguities
- The map can be incomplete

Store in

Matching Problem Snapshot view

In real-time, few observations are available.

State -

Matching Problem Observation Buffer

To limit ambiguities, an observation and a state estimate buffer can be used.

State ...

Matching Problem Kalman Smoothing

Kalman smoothing propagates the state estimates backward improving the trajectory.

Matching Problem trajectory Adjustment

The trajectory is adjusted such that the observations and the map best coincide.

Matching Problem Likelihood definition

The adjusted trajectory:

$$\widetilde{\mathbf{x}}_{k} = \begin{bmatrix} \widetilde{x}_{k} \\ \widetilde{y}_{k} \\ \widetilde{\theta}_{k} \end{bmatrix} = \begin{bmatrix} \cos \delta_{\theta} & -\sin \delta_{\theta} & 0 \\ \sin \delta_{\theta} & \cos \delta_{\theta} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \widehat{x}_{k|K} \\ \widehat{y}_{k|K} \\ \widehat{\theta}_{k|K} \end{bmatrix} + \begin{bmatrix} \delta_{x} \\ \delta_{y} \\ \delta_{\theta} \end{bmatrix}$$

Matching Problem Likelihood definition

The adjusted trajectory:

$$\widetilde{\mathbf{x}}_{k} = \begin{bmatrix} \widetilde{x}_{k} \\ \widetilde{y}_{k} \\ \widetilde{\theta}_{k} \end{bmatrix} = \begin{bmatrix} \cos \delta_{\theta} & -\sin \delta_{\theta} & 0 \\ \sin \delta_{\theta} & \cos \delta_{\theta} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \widehat{x}_{k|K} \\ \widehat{y}_{k|K} \\ \widehat{\theta}_{k|K} \end{bmatrix} + \begin{bmatrix} \delta_{x} \\ \delta_{y} \\ \delta_{\theta} \end{bmatrix}$$

We search for the adjustment δ that maximizes the likelihood knowing the observations and the map.

$$L(\boldsymbol{\delta} | \mathbf{Z}_{\mathcal{K}}) = \prod_{k \in [[\mathcal{K} - S, \mathcal{K}]]} \prod_{\mathbf{z}_{j}^{(k)} \in \mathbf{Z}^{(k)}} L\left(\widetilde{\mathbf{x}}_{k} | \mathbf{z}_{j}^{(k)}\right)$$

Matching Problem Likelihood definition

The adjusted trajectory:

$$\widetilde{\mathbf{x}}_{k} = \begin{bmatrix} \widetilde{x}_{k} \\ \widetilde{y}_{k} \\ \widetilde{\theta}_{k} \end{bmatrix} = \begin{bmatrix} \cos \delta_{\theta} & -\sin \delta_{\theta} & 0 \\ \sin \delta_{\theta} & \cos \delta_{\theta} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \widehat{x}_{k|K} \\ \widehat{y}_{k|K} \\ \widehat{\theta}_{k|K} \end{bmatrix} + \begin{bmatrix} \delta_{x} \\ \delta_{y} \\ \delta_{\theta} \end{bmatrix}$$

We search for the adjustment δ that maximizes the likelihood knowing the observations and the map.

$$L(\boldsymbol{\delta} | \mathbf{Z}_{\mathcal{K}}) = \prod_{k \in [\mathcal{K} - S, \mathcal{K}]} \prod_{\mathbf{z}_{j}^{(k)} \in \mathbf{Z}^{(k)}} L(\widetilde{\mathbf{x}}_{k} | \mathbf{z}_{j}^{(k)})$$

with the likelihood given a single observation being

$$L\left(\widetilde{\mathbf{x}}_{k} \left| \mathbf{z}_{j}^{(k)} \right.\right) = \sum_{\mathbf{m}_{i} \in \mathbf{M}} L_{i,j}\left(\widetilde{\mathbf{x}}_{k} \left| \mathbf{z}_{j}^{(k)} \right.\right) \mathbb{P}_{i,j} + L_{\emptyset,j} \mathbb{P}_{\emptyset,j}$$

Matching Problem trajectory Adjustment

Using the adjusted trajectory, matches can be selected.

Matching Problem Results

More matches

- observation can be matched later
- the adjustment makes mathing easier

Improved consistency

Map Reliability Problem Statement

Incorrectly referenced marking

Change affecting one feature

Change affecting an area

SyRI Seminar

Map Reliability First work

$$p_m = \exp\left(-\frac{\overline{y_m^2}}{\alpha^2}\right)$$

with

$$y_m = \sum_i \left| C^i - h^m(\mathbf{x}_k) \right|$$

Map Reliability Perspectives

- Using the residuals y with their covariance matrices S to decide to reject or not a map feature
- All residuals attributed to a feature m_i can be merged by covariance intersection
- A test is performed to check if the residuals are within the chosen risk tolerance

$$\boldsymbol{y}\boldsymbol{S}^{-1}\boldsymbol{y}^{T} < \frac{\gamma\left(\frac{\dim(\boldsymbol{y})}{2}, \frac{1-\alpha}{2}\right)}{\Gamma\left(\frac{\dim(\boldsymbol{y})}{2}\right)}$$

• The residuals can be updated as new trajectories are recorded

$$y = \left(S_1^{-1} + S_2^{-1}\right)^{-1} \left(S_1^{-1}y_1 + S_2^{-1}y_2\right)$$