

Cooperative Frontier-Based Exploration Strategy for Multi-Robot System

N. Mahdoui, V. Frémont and E. Natalizio

Séminaire Systèmes Robotiques en Interaction 26 juin, 2018.

Séminaire SyRI – 26 juin, 2018

Plan

- Introduction
- Exploration strategy
- MAV fleet coordination
- Simulation study
- Conclusions

M LABSY

UNIVERSITÉS

3

Introduction Applications

Search and rescue.

http://www.onyxstar.net/\search-and-rescue-by-drone/)

Infrastructure inspection. (https://uavamerica.com/ infrastructure-inspection-a-customer-perspective/)

Reconnaissance and surveillance.

(http: //www.geologyin.com/2014/08/drones-for-geology.html)

Séminaire SyRI – 26 juin, 2018

Introduction Motivations

versus

Introduction Motivations

Fleet of MAVs deployment

- + Scalability
- + Limited failure risks
- + Performances increase
- + Less time execution

CINIS

+ Area coverage improvement

Introduction Motivations

45 - 45 - 45 versus 45 - 45

Fleet of MAVs deployment

- + Scalability
- + Limited failure risks
- + Performances increase
- + Less time execution
- + Area coverage improvement

SENSOR? EXPLORATION? COORDINATION? DATA? WHEN? TO WHOM?

Plan

- Introduction
- Exploration strategy
 - Map construction
 - o Frontier points and information gain computation
 - Frontier points processing
 - o Goal assignment
- MAV fleet coordination
- Simulation study
- Conclusions

Map construction

3D Point cloud

3D voxels

T1: Occupancy grid mapping framework T2: 2D projection onto the plane z = 0

Frontier points and information gain computation

Frontier points and information gain computation

Frontier points

- Frontier points are cells that lie between unknown and either free or occupied* cells
- will be discarded later

Frontier points and information gain computation

Frontier points

- Frontier points are cells that lie between unknown and either free or occupied* cells
- will be discarded later

Information gain

• The information gain of *F_{ij}* represents the number of *unknown* cells adjacent to it

F

Séminaire SyRI – 26 juin, 2018

CINIS

CINIS

SORBONNE UNIVERSITÉS

Delete the frontier points adjacent to occupied cells.

heudiasvc

Goal assignment

multi-MAV

```
Input
                   : Candidate targets t_i \in G with their respective information gain I(t_i), states of
                     MAVs s_i in the cluster C, number of MAVs in the cluster n_C
                   : \theta(i,j) assignment of MAV<sub>i</sub> with target j
Output
Assigned targets \mathscr{G} = \emptyset
while MAV; still without target goal do
        // Compute the utility of reaching each target:
        while t_i \notin \mathcal{G} do
                 U(t_j) = I(t_j) \exp(-\lambda.(dmin(s_j, t_j) + n_C / \sum_{k=1}^{n_C} k \neq j} (dmin(s_k, t_j))))
        end
         // Compute the target that maximizes the utility:
        t_{j'} = argmax_{t_j \in G \cap \mathscr{G}} U(t_j)
        // Assign target j' to MAV;:
        \theta(i,i')
        // Schedule the information gain of the remaining candidate targets:
        while t_i \in G \cap \mathscr{G} do
                 if dist(t<sub>i</sub>, t<sub>i</sub>) <= thresholdRange then
                          l(t_{i}) = l(t_{i})(1 - \exp(-\gamma . ||t_{i'} - t_{i}||))
                 end
         end
        // Remove the target goal t_{i'}:
        \mathcal{G} = \mathcal{G} \cup t_{i'}
end
```


Plan

- Introduction
- Exploration strategy
- MAV fleet coordination
 - Clusters and status selection
 - Exchanged data
 - MAVs interaction
 - Strategies to face some issues
- Simulation study
- Conclusions

Laber

12

Clusters and status selection

Exchanged data

Note: All MAVs' status are initialized to Leader.

14

MAVs interaction

Strategies to face some issues

Communication loss/failure

 If the Explorer does not receive any assigned target from the Leader after a period *τ*, it selects its own one

MAV getting stuck

- MAVs' status are always updated
- A new Leader is selected at each iteration during the mission

Plan

- Introduction
- Exploration strategy
- MAV fleet coordination
- Simulation study
 - o Implementation details
 - Exploration evaluation
 - Evaluation with an Ad Hoc network
- Conclusions

Laber

Implementation details

http://www.ros.org/ http://gazebosim.org/ http://wiki.ros.org/ardrone_autonomy

Implementation details

FOV	π/3	rameter λ	0.2
Dimension	8m*8m	Min distance between fron-	0.3
		tiers d	
Resolution	0.05 <i>m</i>	Range to re-	[1 <i>m</i> ,3 <i>m</i>]
		duce the lg	
		[R _{min} , R _{max}]	
Linear veloc-	[0.1,0.3]	Theta veloc-	[0.1,0.3]
ity		ity	
Initial posi-	One MAV: {MAV1(1,1)};		
tion			
	two MAVs: {MAV1(1,1); MAV2(2,2)} and		
	<i>Three MAVs:</i> { <i>MAV</i> 1(2,2); <i>MAV</i> 2(0,0); <i>MAV</i> 3(-2,-2)}		

UNIVERSITÉS

CIN

http://www.ros.org/ http://gazebosim.org/ http://wiki.ros.org/ardrone autonomy

Exploration evaluation

Ratio of explored space during time for one MAV

SORBONNE

Exploration evaluation

Projected 2D map in a coordinated exploration with a team of one, two and three MAVs

(a) One MAV

(b) Two cooperative MAVs

(C) Three cooperative MAVs

Green, blue and red markers and arrows define the initial position and the trajectory of MAV1, MAV2 and MAV3, respectively.

Exploration evaluation

Total time spent during exploration and total distance traveled by each MAV in the fleet

# MAVs		Total traveled dis- tance (m)	Total time explor- ing (s)
One MAV	MAV1	22.69 ± 2.74	197.85 ± 17.34
Two MAVs	MAV1	15.12±2.35	133.85 ± 7.83
	MAV2	9.35±1.81	
Three MAVs	MAV1	10.91 ± 1.04	126.42 ± 14.08
	MAV2	7.75±1.9	
	MAV3	8.30 ± 1.71	

Frontier points processing Explored area space and frontier points evolution

A: Explored space rate with one, two and three MAVs

heudiasvc

21

Frontier points processing Explored area space and frontier points evolution

A: Explored space rate with one, two and three MAVs

B: The evolution of frontier points and candidate targets number during cooperative exploration

CINIS

SORBONNE UNIVERSITÉS

Evaluation with an Ad Hoc network Implementation details

One ROS core on multiple machines:

- + Easy to implement
- Vulnerable regarding the ROS core
- Reliable network required

Multiple ROS cores on multiple machines (multi-master):

- + Independent ROS cores
- + Robust to network failure
- Cores synchronization required

Evaluation with an Ad Hoc network Implementation details

One ROS core on multiple machines:

- + Easy to implement
- Vulnerable regarding the ROS core
- Reliable network required

Multiple ROS cores on multiple machines (multi-master):

- + Independent ROS cores
- + Robust to network failure
- Cores synchronization required

http://wiki.ros.org/multimaster_fkie Network Time Protocol (NTP)

Introduction Exploration strategy MAV fleet coordination Simulation study Conclusions Implementation details Exploration evaluation Evaluation with an Ad Hoc network

Evaluation with an Ad Hoc network Comparison of exchanged data size of 2D occupancy grid versus frontier points

Plan

- Introduction
- Exploration strategy
- MAV fleet coordination
- Simulation study
- Conclusions

M LABSY

- Frontier-based strategy
- → Exploration time

- Frontier-based strategy
- → Exploration time
 - Novel utility function
- → traveled distance

- Frontier-based strategy
- → Exploration time
 - Novel utility function
- → traveled distance
 - Leader-based approach
- → Communication issues

- Frontier-based strategy
- → Exploration time
 - Novel utility function
- → traveled distance
 - · Leader-based approach
- → Communication issues
- Frontier points exchange
- → Exchanged data size

- Frontier-based strategy
- → Exploration time
 - Novel utility function
- → traveled distance
- Leader-based approach
- → Communication issues
- · Frontier points exchange
- → Exchanged data size

Future work

- Large scale evaluation
- Relative localization estimation

Thank you for your attention.

Séminaire SyRI - 26 juin, 2018

Mapping process

Octomap

The octomap is a 3D mapping framework based on a hierarchical data structure (Octree). The 3D space is recursively subdivided until attending minimum voxel size (resolution).

- Compact memory representation
- Fast data access
- Obstacle avoidance

Hornung, A.; Wurm, K. M.; Bennewitz, M.; Stachniss, C. & Burgard, W. OctoMap: An efficient probabilistic 3D mapping framework based on octrees Autonomous Robots, Springer, 2013, 34, 189-206

The utility function

Utility function

$U(t_j) = I(t_j) \exp(-\lambda.(dmin(s_i, t_j) + n_C / \sum_{k=1, k \neq i}^{n_C} (dmin(s_k, t_j))))$

where:

 $I(t_i)$: information gain of the target goal t_i

λ: tuning parameter for trade-off between rapid exploration and filling in details

n_C: number of neighbors in the cluster C

 $dmin(si, t_i)$: shortest distance from robot *i*'s state to the candidate target goal

Path planning and control

move_base package

CINIS

- Velocity commands
- Global and local planner
- Dijkstra algorithm

ROS data exchange

ROS frames for two MAVs.

Séminaire SyRI – 26 juin, 2018

ROS data exchange

ROS frames for two MAVs.

Leader (MAV1)

ROS topics for two MAVs.

ROS data exchange

ROS frames for two MAVs.

ROS topics for two MAVs.

Topics for data exchange

- ID_information : Robot ID (int) and its state (geometry_msgs/PoseStamped)
- Frontiers_to_leader_topic: frontiers (geometry_msgs/Point) and their corresponding information gain(int)
- Target_goal_information : state of the future target (geometry_msgs/Pose)
- Ids_of_reached_goals: information for acknowledgment(int)

