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Introduction

Unmanned Aerial Vehicles (UAVs) have become promising mobile platforms
capable of navigating semi-autonomously or autonomously in uncertain
environments.
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Introduction

Multirotor vehicle
The multirotor vehicle, has proof to be suitable for these applications
due to the fact that requires less space for take-off and landing, and is
essentially simpler to build, comparing to a conventional helicopter.

It is an under-actuated system and is a dynamically unstable system.
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Introduction

The multirotor is also sensitive to aerodynamic disturbances that can
lead to different faults.

In order to increase the multirotor safety and reliability, FTC systems
can be considered to identify malfunctions at any time, and to allow a
stable flight even if faults occurs.
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General FTC scheme
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General FTC scheme
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Modeling of actuator faults

uf (t) ufs(t) 
Actuators

Faults

The actuator faults can be represented by an additive or a
multiplicative signal. Consider the presence of a multiplicative fault:

ufs(t) = (Inu − µ(t))uf (t) (1)

where the value of µi(t) indicates:

µi(t) = 1 ⇒ a total fault of the i-th actuator,
µi(t) = 0 ⇒ the i-th actuator is healthy,
µi(t) =]0, 1[ ⇒ a loss of effectiveness of i-th actuator.
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Modeling of actuator faults
Now, it is possible to rewrite (1) as an external additive fault signal

ufs(t) = uf (t) + η(t), (2)
where η(t) = −µ(t)uf (t).

Reference
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Actuator fault

Quadcopter
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Figure: Active fault tolerant control scheme.
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Mathematical model of a multirotor

Using the Newton-Euler formalism, the dynamics of a rigid body under
external forces are defined by:

ẍ = (cψsθcφ+ sψsφ) 1mT

ÿ = (sψsθcφ− cψsφ) 1mT

z̈ = −g + (cθcφ) 1mT
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Control effectiveness matrix Ξ of a multirotor

Ξ(t) =


t1(t) . . . tN (t)
r1(t) . . . rN (t)
p1(t) . . . pN (t)
y1(t) . . . yN (t)



ti(t) = µi(t)b,
ri(t) = µi(t)bls(ϕi),
pi(t) = µi(t)blc(ϕi),
yi(t) = µi(t)dΓi ,
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Analysis of static controllability

An important step in the design of fault tolerant systems is to know
how faults affect the system:

Considering the physical limits
of the actuators:

0 ≤ T ≤ Tmax

|R| ≤ Rmax

|P| ≤ Pmax

|Y | ≤ Ymax ,

with T = mg, and the yaw
torque Y = 0:
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FDD system
The FDD system is performed using three model-based observers:

1 Linear Proportional Integral Observer (PIO),
2 Nonlinear Adaptive Observer (NAO).
3 quasi-Linear Parameter Varying PIO (qLPV-PIO),
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Figure: Fault detection and diagnosis system.
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FDD system: linear PIO design

Consider the linear system described by

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t).

(3)

The system (3) with faults η(t) can be written as the following faulty
system:

ẋf (t) = Axf (t) + Buf (t) + Eη(t) + Vw(t),
yf (t) = Cxf (t) + Ww(t).

(4)

Now, it is possible to apply a linear PIO in its usual form

˙̂xf (t) = Ax̂f (t) + Buf (t) + E η̂(t) + KP
(
yf (t)− ŷf (t)

)
,

ŷf (t) = C x̂f (t),
˙̂η(t) = KI

(
yf (t)− ŷf (t)

)
.

(5)
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FDD system: linear PIO design

Theorem 1. The state and the fault estimation errors ea(t) converge
asymptotically to zero and the L2-gain of transfer from wa(t) to ea(t)
is bounded by γ =

√
γ̄ if ∃ P, M and γ̄.

P defines a symmetric positive definite matrix, M represents a matrix,
and γ̄ a scalar solution to the following optimization problem

min
P, M

γ, (6)

subject to [
He{PĀ−MC̄}+ I PΓ̄−MW̄

Γ̄>P − W̄>M> −γ̄I

]
< 0, (7)

The gain of the observer is computed from K̄PI = P−1M.
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FDD system: NAO design

A nonlinear adaptive observer is given by

˙̂yf (t) =α
(
yf (t), ẑf (t),uf (t)

)
+ β

(
yf (t), ẑf (t),uf (t)

)
η̂(t)

−Ky
(
yf (t)− ŷf (t)

)
,

˙̂zf (t) =Λ
(
yf (t), ẑf (t),uf (t)

)
,

˙̂η(t) =−Kf β
>(yf (t), ẑf (t),uf (t)

)(
yf (t)− ŷf (t)

)
,

(8)

where Ky > 0 and Kf > 0 are the gains of the observer.

If there are no unmeasurable states, the observer given by (8) can be
simplified as follows:

˙̂yf (t) =α
(
yf (t),uf (t)

)
+ β

(
yf (t),uf (t)

)
η̂(t)

−Ky
(
yf (t)− ŷf (t)

)
,

˙̂η(t) =−Kf β
>(yf (t),uf (t)

)(
yf (t)− ŷf (t)

)
.

(9)

18 / 39



FDD system: qLPV-PIO design

In order to reduce the complexity of nonlinear equations without loss
compromise between representation and controllability, and to use the
Linear Time Invariant (LTI) control theory, a quasi-Linear Parameter
Varying (qLPV) representation is considered.

ẋ(t) =
k∑

i=1
ρi
(
ζ(t)

)(
Aix(t) + Biu(t)

)
,

y(t) = Cx(t),
ρi
(
ζ(t)

)
≥ 0, ∀t,∀i = 1, . . . , k,

k∑
i=1

ρi
(
ζ(t)

)
= 1, ∀t.

Scheduling 
functions

(interpolation)

Nonlinear system

qLPV representation
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FDD system: qLPV-PIO design
Nonlinear system with faults η(t) modeled as unknown inputs and
disturbances w(t) is described by the following qLPV model

ẋf (t) =
k∑

i=1
ρi
(
ζ(t)

)(
Aixf (t) + Biuf (t) + Eiη(t) + Wiw(t)

)
,

yf (t) =Cxf (t),
(10)

An extension of classical PI observer for the system (10) is considered
by the following equations:

˙̂xf (t) =
k∑

i=1
ρi
(
ζ(t)

)(
Ai x̂f (t) + Biuf (t) + Ei η̂(t)

+ KPi(yf (t)− ŷf (t))
)
,

ŷf (t) =C x̂f (t),

˙̂η(t) =
k∑

i=1
ρi
(
ζ(t)

)
KIi
(
yf (t)− ŷf (t)

)
,

(11)

20 / 39



FDD system: qLPV-PIO design

Theorem 2. The state and the fault estimation errors ea(t) converge
asymptotically to zero and the L2-gain of transfer from wa(t) to ea(t)
is bounded by γ =

√
γ̄ if ∃ P, Mi and γ̄. P defines a symmetric

positive definite matrix, Mi represents matrices with i = 1, 2 . . . , k, and
γ̄ a scalar solution to the following optimization problem

min
P, Mi

γ, (12)

subject to [
He{PĀi −MiC̄}+ I PΓ̄i

Γ̄i
>P −γ̄I

]
< 0, (13)

The gains of the observer are computed from K̄PIi = P−1Mi .
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FDD system

Fault detection
The additive fault estimation vector η̂(t) are used to detect any actuator
faults:

η̂s(t) ≥ Hs or η̂s(t) ≤ hs ⇒ in faulty case
η̂s(t) < Hs or η̂s(t) > hs ⇒ in fault-free case

(14)

where Hs and hs are the upper and lower thresholds.

Fault isolation

Table: Fault isolation logic.

Faults η̂2(t) η̂3(t)
M1 - -
M2 + -
M3 + +
M4 - +
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FTC system: partial fault
The goal is to estimate the magnitude of the actuator faults η̂(t), for
provide a control law uf (t) and ensure the tracking trajectory
performance of the faulty system to the reference one.

uf (t) = u(t)− η̂(t). (15)
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FTC system: total fault
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FTC system: partial fault
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FTC system: partial fault
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FTC system: partial fault
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FTC system: partial fault

f3

f1

f2

f4

mg

OB

O
 

yB

zB

Front

zI yI

OI
xI

0

xB

M1

M2

M3

M4

(a) (b)

Figure: (a) Quadcopter configuration, (b) Analysis of static controllability
with partial fault of 12% in M2.
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FTC system: partial fault
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FTC system: partial fault
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FTC system: partial fault (VIDEO)
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FTC system: total fault
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Figure: (a) Quadcopter configuration, (b) Analysis of static controllability
with fault of 80% in M2.
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FTC system: total fault
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FTC system: total fault
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FTC system: total fault
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35 / 39



FTC system: total fault
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FTC system: total fault (VIDEO)
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Conclusions

In order to detect, isolate and estimate the actuator partial or total
faults, a model-based observer was applied to the rotational dynamics of
the quadcopter.

The partial fault was accommodated by using the fault estimation to
reduce the effect of the fault.

In order to reconfigurate a total fault in an actuator of the quadcopter,
the FTC system stabilizes the vehicle around the desired position with a
constant yaw velocity.
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Merci!–Gracias!–Thanks!
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