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Introduction

Unmanned Aerial Vehicles (UAVs) have become promising mobile platforms

capable of navigating semi-autonomously or autonomously in uncertain
environments.

Surveillance

Crop spraying,
Agriculture assessment

Fire monitoring
wro b

Pre
Home: 46294 m

Supply delivery
Aerial photography

Among others

Oil spill detection
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Introduction

Multirotor vehicle

The multirotor vehicle, has proof to be suitable for these applications
due to the fact that requires less space for take-off and landing, and is
essentially simpler to build, comparing to a conventional helicopter.

It is an under-actuated system and is a dynamically unstable system. )




Introduction

The multirotor is also sensitive to aerodynamic disturbances that can
lead to different faults. J
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General FTC scheme

-y e(t) u(t)i Actuators
Controller )E

Y/ (1)

Reference

Sensors

Figure: Nominal control system.
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General FTC scheme

System Faults

_________ i A
-y e(t) u(t) i Actyators i v (1)

Controller —>! ,

Reference i I

| | Sensors l

Figure: Control system with faults.



General FTC scheme

System Faults
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Modeling of actuator faults

Faults

Yl
us (1) us(1)
——> Actuators p—>

The actuator faults can be represented by an additive or a
multiplicative signal. Consider the presence of a multiplicative fault:

where the value of y;(t) indicates:

pi(t) =1 = a total fault of the i-th actuator,
pi(t) =0 = the i-th actuator is healthy,
wi(t) =]0,1] = a loss of effectiveness of i-th actuator.
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Modeling of actuator faults

Now, it is possible to rewrite (1) as an external additive fault signal

uy, (1) = uy(t) +n(t), (2)

__|___ Nominal Comrotter <11/
i [T
] ]
=Y () ! v
i Controller : Quadcopter |—1 >
Reference : : ]
:__________“_ _______ ) UAV System
eyl iubfufuffishigly B et ieeeittt=tt=t el
1 H i 1 1
. || ||
1
o Controller i = Fault detection ] 1
— re-design < i and diagnosis 1 )
e S B W S
i Fault accomodation or FDD system i
!

reconfiguration mechanism

_____________________________________________

Active FTC system
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Mathematical model of a multirotor

Using the Newton-Euler formalism, the dynamics of a rigid body under
external forces are defined by:




Control effectiveness matrix = of a multirotor
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Control effectiveness matrix = of a multirotor
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Analysis of static controllability

An important step in the design of fault tolerant systems is to know

how faults affect the system:

J

Considering the physical limits
of the actuators:

0< T < Tras
|R| < Rimaa
|P| < Pras
Y] < Yinas,

with T = mg, and the yaw
torque Y = 0:

Torque in pitch: P (Nm)

Il Nominal
3 I with fault
2
1
0
-1
-2
-3
3
2
1
0
-1
=21
-3 =

-1 0o 1 2
Torque in roll: R (Nm)
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FDD system

The FDD system is performed using three model-based observers:

@ Linear Proportional Integral Observer (PI10),

=Y e® ur(t)

vr(t)

Controller

Reference

us(t)

Fault detection

FDD

Fault isolation ~ <€—— observer-based ]

Fault identification 1(t)

FDD system

Figure: Fault detection and diagnosis system.
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The FDD system is performed using three model-based observers:

@ Linear Proportional Integral Observer (PI10),
@ Nonlinear Adaptive Observer (NAO).

Fault isolation ~ <€—— observer-based
Fault identification 1(t) !

FDD system

N(t) Actuator fault
-Y et w() | Yus() H v
Controller >3 Quadcopter T
Reference i ]
M e e e ————— 1
UAV System
pmmmmmmmmm e
w()| ! y()
1
Fault detection | FDD
1

Figure: Fault detection and diagnosis system.



The FDD system is performed using three model-based observers:

@ Linear Proportional Integral Observer (PI10),
@ Nonlinear Adaptive Observer (NAO).
@ quasi-Linear Parameter Varying PIO (qLPV-PIO),

l N(t) Actuator fault
-Y et w() | Yus() H v
Controller >3 Quadcopter T
Reference i ]
M e e e ————— 1
UAV System
pmmmmmmmmm e
w()| | yr(1)
1
Fault detection | FDD
1

Fault isolation ~ <€—— observer-based
Fault identification 1(t) !

FDD system

Figure: Fault detection and diagnosis system.



FDD system: linear PIO design

Consider the linear system described by

X
=
Il
o
%
=
_I_
&
=R

y(t) = Cx(1) )

The system (3) with faults n(¢) can be written as the following faulty
system:

x7(t) = Axyp(t) + Buy(t) + En(t) + Vw(t), (4)
yi(t) = Oxs(t) + Ww(t).

Now, it is possible to apply a linear PIO in its usual form

y,f(t) = Ox4(1), (5)
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FDD system: linear PIO design

Theorem 1. The state and the fault estimation errors e,(t) converge
asymptotically to zero and the La-gain of transfer from w(t) to eq(t)
is bounded by v =/ if 3 P, M and 7.

P defines a symmetric positive definite matrix, M represents a matriz,
and ¥ a scalar solution to the following optimization problem

He{PA—-MC}+1 PT-MW | _ )
r'p—wrm’ —~1 ’

The gain of the observer is computed from Kp; = P~1M.



FDD system: NAO design

A nonlinear adaptive observer is given by

¥ (t) =a(yp(t), 27 (), us(t)

— Ky (ys(t) = y4(t)
27(1) =M (y (1), 2 (1), us(t)
(t) == KB (yy(8), 2¢(8), up (1)) (v, () = §(1)),

where K, > 0 and Ky > 0 are the gains of the observer.

If there are no unmeasurable states, the observer given by (8) can be
simplified as follows:

§’f(t) =a(ys(t), ) Bly (1), up(t))n(t)
- K (Yf ys(1)), 9)
(1) = — KB (yp(t), up(1)) (4 () — 9(1)).

18 /39



FDD system: qLPV-PIO design

In order to reduce the complexity of nonlinear equations without loss
compromise between representation and controllability, and to use the
Linear Time Invariant (LTI) control theory, a quasi-Linear Parameter
Varying (qLPV) representation is considered.

qLPV representation

k
. Scheduli
() =Y pi(C() (Aix(t) + Baua(t)),  fmetions
i=1 (interpolation)

y(t) = Ox(1),
pi(¢(t)) >0, Vi, Vi=1,...,k,

k
Zpi(C(t)) =1, Vt.
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FDD system: qLPV-PIO design

Nonlinear system with faults 7(¢) modeled as unknown inputs and
disturbances w(t) is described by the following qLPV model

sz ) (Aixp () + Byug(t) + Em(t) + Wyw(t)),

yy(t) :fo( ),

An extension of classical PI observer for the system (10) is considered
by the following equations:

(10)

ZPZ ) (A% () + Byug(t) + Eiij(t)
+ KPi(Yf( ) = ¥5(1)), (11)
a0 =Cf<f( );

sz Kh yf( ) }A’f(t)),
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FDD system: qLPV-PIO design

Theorem 2. The state and the fault estimation errors e,(t) converge
asymptotically to zero and the La-gain of transfer from w(t) to eq(t)
is bounded by v = /7 if 3 P, M; and 7. P defines a symmetric
positive definite matriz, M; represents matrices with i = 1,2...,k, and
~ a scalar solution to the following optimization problem

i 12
pin o, (12)

subject to ~ ~ ~
He{PA; — M;C} + 1 PT;
{ e ! <o, (13)

r; P —~1

The gains of the observer are computed from Kpp = P71 M;.



FDD system

Fault detection

The additive fault estimation vector 7(¢) are used to detect any actuator
faults:

Ns(t) > Hs or 7s(t) < hs = in faulty case

14
fs(t) < Hs or 1s(t) > hs = in fault-free case (14)

where Hg and hg are the upper and lower thresholds.

Fault isolation

Table: Fault isolation logic.

| Faults [| 72(2) || 9s(t) |

M, - -
M, + -
M ¥ +
My - +

N
%]
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FTC system: partial fault

The goal is to estimate the magnitude of the actuator faults 7(t), for
provide a control law uy(¢) and ensure the tracking trajectory
performance of the faulty system to the reference one.

uy(t) = () —7(t). (15)

e Nominal Controller, ___ W Partial acwator Jul) | yap|svstem_
1 1 1
1 1 1
[ i Quadcopter w() |
1 1 X X 1
Reference | P ury (1) | A uts(t) | f(®)] yu() !
t —> |

! /| i M\J i
b ! oo —- | v _i
Y A )
| Fault Vect i
i ector o i
|| isolation () A vy (t)ds ]
1 1
| - =i . 1
Lo ;4 Faulty w() I
i . Fault estimation |
: . Fau{t A(t) (1) observer i
i etection Fault identification )
H Actuator fault diagnosis and accommodation i

Figure: FTC scheme: partial fault. 23 /39



FTC system: total fault

Nominal Controller 1(?) (Total actuator fauly) UAV|System
———————————————————————— [P o A s ]
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Figure: FTC scheme: total fault.
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FTC system: partial fault

Figure: (a) Quadcopter configuration evolving in its longitudinal plane with
the main forces acting in the vehicle, (b) Analysis of static controllability. . .,



system: partial fault
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Figure: Experimental tests: comparison between the faulty quadcopter
without and with FTC, 30 % fault My, ,, then My, and Mg,.
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FTC system: partial fault
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Figure: Experimental tests: additive fault estimation 30 % fault My, ,, then
ML[ and MRL
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FTC system: partial fault

I 1 crminal
[ ith faut

0 02 04 06 08

U2

(b)

-08 -06 -04 -02

Figure: (a) Quadcopter configuration, (b) Analysis of static controllability
with partial fault of 12 % in M.
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FTC system: partial fault

— Without FTC
i — With FTC
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Figure: Experimental tests: comparison between the faulty quadcopter
without and with FTC, with partial fault of 12% in Ms.
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FTC system: partial fault
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Figure: Experimental tests: additive fault estimation with partial fault of 12 %
in M. 30/39



FTC system: partial fault (VIDEO)
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FTC system: total fault

ElNominal

Figure: (a) Quadcopter configuration, (b) Analysis of static controllability
with fault of 80 % in M.



FTC system: total fault

Bl Nominal
I With fault

fTL&X[ Fa;t_l_t 80% 08 06 04 -02 0 02 04 06 08
(a) (b)

Figure: (a) Quadcopter configuration, (b) Analysis of static controllability
with fault of 80 % in M.



FTC system: total fault

Fault

< Landing
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Figure: Experimental tests: Position of the quadcopter with fault of 80 % in

M.
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FTC system: total fault
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Figure: Experimental tests: Attitude dynamics of the quadcopter with fault of
80 % in M.



FTC system: total fault
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Figure: Experimental tests: motors’ duty cycles (percentage).
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FTC system: total fault (VIDEO)
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Conclusions

@ In order to detect, isolate and estimate the actuator partial or total
faults, a model-based observer was applied to the rotational dynamics of
the quadcopter.
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Conclusions

@ In order to detect, isolate and estimate the actuator partial or total
faults, a model-based observer was applied to the rotational dynamics of
the quadcopter.

@ The partial fault was accommodated by using the fault estimation to
reduce the effect of the fault.

@ In order to reconfigurate a total fault in an actuator of the quadcopter,
the FTC system stabilizes the vehicle around the desired position with a
constant yaw velocity.
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